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Abstract:  

Roofing systems are considered one of the items 

that in most need of frequent inspection and 

rehabilitation due to its ongoing exposure to the 

elements. Manual roof inspections are time 

consuming and subjective. This study uses 

Convolutional Neural Network (CNN), an image-

processing technique, to classify roofs according to 

their damage level. The proposed model analyzes 

images showing general views of roofs to determine 

(on a macro level) whether the roof has sustained 

no (or low), moderate, or severe damage. Based on 

this analysis, more detailed roofing inspection can 

be conducted if needed. The study was applied on 

more than 200 images of roofs of the University of 

Waterloo campus, collected using a drone. 

Different CNN architectures were examined where 

the number of convolution kernels (i.e., the depth 

of the CNN layer) has been the main variable. This 

experiment has revealed that complicating the 

model by changing the depth of the layer causes the 

model to overfit with no performance 

improvements on the validation dataset. The 

proposed model, using only 5 kernels in the first 

convolution layer, has achieved 90% accuracy 

level. The developed model serves as the initial step 

of a larger roofing inspection framework, reducing 

the need for more time and resource intensive 

assessments. The end goal of the proposed 

inspection framework is to provide a fast, objective, 

and reliable roofing inspection and assessment, 

helping asset managers of large portfolios better 

assign the allocated rehabilitation funds. 
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1 Introduction 

Roofs are frequently exposed to extreme 

temperatures, rain, snow, and other severe weather 

events. As such, roofs are considered to be among the 

most vulnerable building components [1, 2]. While the 

average life expectancy of a roof is a function of its 

type and material, having an adequate maintenance 

program is essential to ensure the roof would live up 

to the expectations and maintain an adequate level of 

service throughout. 

Currently, most inspections are done manually. 

Manual inspections suffer from a plethora of 

shortcomings. First of all, manual data collection and 

processing is a time-consuming process [3]. Kamarah 

[4] estimated that an average inspection site visit takes 

about 3 hours, and Abou shaar [5] estimates that for 

every hour spent on site for data collection, three more 

hours are spent in analysis. Second, manual 

inspections are subjective as they rely on the 

inspector’s training and experience [6]. This often 

means that two inspectors can produce two different 

reports for the same asset [6]. Third, roofs are 

sometimes difficult to access and, if accessed, often 

pose safety risks to inspectors [7]. This puts extra 

overhead on the inspection company in terms of 

special training and/or insurance. Hence, automation 

of inspection is a must. 

Computer vision (i.e., image-based analysis) 

allows computers to extract and analyze information 

directly from pictorial data such as images and videos 

[8]. Hence, and because images are easy to collect 

(e.g., using a cell phone camera), computer vision has 

been under investigation as a way to automate 

supervision and inspection tasks in the construction 

domain. For example, [9] developed a computer-

vision-based pavement crack inspection model 

capable of achieving 92% accuracy using a 

commercial grade GoPro as its data collection source. 

[10] developed a convolutional neural network (CNN) 

based classification model capable of detecting 
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concrete cracks as well as distinguish them from 

handwritten markings on the concrete surface. As a 

step towards a more comprehensive assessment, [11] 

was capable of detecting multiple defects such as 

cracks, concrete delamination and rebar exposure. 

Other Examples of computer vision applications 

towards automating asset inspections include defect 

detection in concrete structures [12], pavements [13], 

and sewers and pipelines [14, 15]. Unfortunately, 

however, little to no work was done on roofing 

condition assessment despite roofs being one of the 

most vulnerable building components. As such, this 

paper aims to fill this research gap by utilizing CNN 

technology towards roofing condition assessment. 

As a step toward automating roofing inspections, 

this paper proposes a computer vision approach that 

utilizes a Convolutional Neural Network (CNN) for 

preliminary classification of roof condition. The 

proposed system relies on images that show the roof 

general view to categorize the roof into one of three 

categories; Clear/Minor, Moderate, or Severely 

Damaged. Based on the classification, more detailed 

inspection can be conducted as needed. This aims to 

reduce the time and resources spent on the inspection 

process because, using this method, not all the roofs 

will need to undergo the same detailed inspections. 

The remaining part of the paper explains the model 

development and testing process. starting with the 

motivation, followed by the data collection process 

and the proposed CNN architecture, and concluding 

with analysis results and discussion.  

 

2 Existing Roof Management Systems 

While buildings, in general, are considered to be 

durable and expected to last for decades, a key for that 

durability is continuous and effective maintenance and 

 

 

repair programs. This is because periodic maintenance 

and rehabilitation increases the building’s lifespan and 

improves the level of service of its components [16]. 

As such, the last few decades have witnessed the 

development of a variety of building management and 

inspection systems that cater to a variety of needs. 

Examples include de Brito et al. [17] concrete bridge 

management system, Curt et al. [18] dam safety 

assessment, and Bortolini and Forcada [19] and Faqih 

and Zayed [20] building inspection systems. However, 

these systems still rely on manual inspections as the 

main source of data.  

As seen in Fig. 1, most roofing systems used in 

non-residential buildings such as schools and hospitals 

are considered to be low-slope roofs. Among those 

roofs, the built-up roof (BUR) system is the most 

common type of roofing in [21]. BURs are generally 

composed of alternating layer of bitumen and 

reinforcing fabric that create a finished membrane 

(often referred to as “roofing felt”) which is finally 

covered by gravel to reduce its exposure to the weather 

elements. 

Originally developed by the US army, ROOFER 

[22] is one of the most common roofing-based asset 

management software. Despite its capabilities, it still 

relies on manual inspections as its sole source of data. 

To reduce the subjectivity of manual inspections, [21] 

developed a pictorial database of common roof 

defects, ranked by their severity. Other examples of 

roofing rehabilitation systems include the works of [1] 

and [23], who defined the most common roofing 

defects, along with possible causes and remedies. 

However, these models, like their predecessors, still 

rely on manual data input. As such, computer vision 

technology provides the opportunity for automation of 

roof inspections, leading to cost, time, and subjectivity 

reductions. 

 

 

  

 
 

Fig. 1: Types of Low-Slope Roofs 
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3 Data Collection 

University of Waterloo is one of the largest 

universities in Canada, having a total of 80 buildings. 

The pictorial dataset used in this study comes from 20 

buildings that are highlighted in Fig. 2. Two different 

data collection methods were used. First, the authors 

were allowed to physically access the building roofs 

and take photographs using their personal cameras (16 

Megapixel phone camera). The second method was 

only used for a group of five buildings (highlighted by 

the red star in Fig. 2) as the roof was inaccessible. In 

that case, the images were collected by a commercial 

drone. The drone was set to record a video of its flight, 

then one of each 10 frames were extracted. The images 

collected were subject to the weather conditions (e.g., 

lighting) prevalent at the time of the data collection, 

which took place over the span of multiple days. The  

 

 

camera angle differed depending on the method of 

collection. Images collected by the commercial drone 

had, on average, a 45-degree angle relative to the roof 

surface (subject to wind conditions and extra tilting of 

the drone for navigation purposes), while images 

collected manually had a 60-degree angle. While the 

camera angle was kept constant relative to the surface 

being captured, the images collected were subject to 

the weather conditions prevalent at the time of the data 

collection, which took place over the span of multiple 

days. As such, the total number of images used in this 

study is 346 representing three damage categories: 

low, moderate, and severe. Examples of the images 

representing the three different categories are in Fig. 

3. One third of the data set (114 images) was used for 

validation and testing purposes, while the remaining 

two-thirds were used for training.  

 

  
 

Fig. 2: Image Locations - University of Waterloo (Red Star-Images Collected by a drone) 

 

 

 

  
 

Fig. 3: Examples of the Collected Images Representing the Three Different Damage Categories 
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4 Proposed CNN architecture 

The composition of CNN elements is an important 

task to achieve maximum performance level. While 

increasing the complexity of the CNN by adding more 

layers or convolution kernels can improve 

performance, over complicating the model might lead 

to performance degradation and overfitting. Inspired  

 

by AlexNet [24] and LeNet [25], three CNN 

architectures are tested, all followed the architecture 

demonstrated in Fig. 4. The only difference was in the 

number of channels in each layer (i.e., the value of N). 

N took three different values; 5, 6, and 8. For 

notational convenience, the three different CNNs that 

were experimented will be referred to as CNN_N. For 

all CNNs, RELU was used as the activation function 

for the fully connected layer. Other studies reported 

that changing the kernel size has a minimal effect on 

accuracy [26]. Hence, the size of the kernel was fixed 

at 10x10 with zero padding and a stride of two. 

5 Implementation Details and Results 

All experiments were performed using the python 

programming language (CUDA 7.5) on a laptop with 

Core i7-10750H@2.6GHz CPU, 16GB RAM, and 

4GB NVIDIA GeForce GTX 1650 Graphical 

Processing Unit (GPU). Learning rate was set to be 

0.0002 while the batch size was set to 22 images. All 

experiments were run for 500 epochs. Accuracy (i.e., 

number of correct classifications) was used as the 

evaluation metric. 

 

 

  
Fig. 4: Proposed CNN Architecture 

 

5.1 Comparing the different models 

Table 1 shows the performance of the different 

CNN models in terms of correct classifications for the 

training and testing datasets. Since the was no function 

to terminate the training process when convergence or 

performance degradation takes place, the epoch where 

the optimal performance is reached is reported in 

Table 1 as an indication for the speed of the training 

process. It is important to note that all three models 

took approximately the same time per epoch (approx. 

18 seconds).  

 

Table 1: Performance Comparison of different 

models 

 

 CNN_5 CNN_6 CNN_8 

Training 

Accuracy (%) 
91.8 91.4 96.5 

Testing 

Accuracy (%) 
89.5 86.8 88.6 

Epoch 469 326 331 

 

 

Table 1 shows that CNN_5 took the longest time 

(i.e., highest number of iterations) to reach an optimal 

performance, followed by CNN_8 and CNN_6. 

However, the performance of CNN_5 is considered to 

be the best of the three for two reasons. First, CNN_5 

is reporting the highest testing accuracy, which speaks 

to its generalization ability. Second, comparing the 

training and testing accuracy reveals that CNN_5 has 

the smallest variation (2.3%). Unlike CNN_8 which, 

despite having the best performance on the training 

dataset, has the highest difference between the training 

and testing accuracies (8%) which raises some 

overfitting concerns. From the data shown in Table 1, 

it can be deduced that, for this particular application, 

creating a simpler model by using less number of 

channels yields models with higher generalization 

abilities and more resilience against overfitting. 

The number of channels refers to the number of 

convolutional kernels used in each layer. Each of these 
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convolutional kernels work independently and aim to 

capture significant features of the image to help reach 

a correct classification. As such, changing the number 

of channels correspond to changing the number of 

significant features captured by the CNN to guide its 

classification activity. The data in Table 1 suggests 

that the distinctive features that differentiate between 

images showing different degrees of roof damage are 

not many, and therefore require a relatively simple 

model to avoid “going deep in the weeds” and losing 

generalization ability. This is supported by the sample 

images shown in Fig. 3, where the differences between 

the damage levels are noticeable even to non-

inspection experts. As such, macro-level roof 

inspection (i.e., holistically analyze roofing conditions 

from images that capture the entire roof surface) can 

be quickly and effectively used to triage the different 

roofs before investing in relatively more resource-

intensive analyses for micro-level inspections. 

5.2 Analyzing the Optimal Model (CNN_5) 

After analyzing the three different models as 

shown in Table 1, CNN_5 was selected as the “optimal 

model” and the results were analyzed in more detail. 

Table 2 shows the confusion matrix of the model’s 

result on a 110-image dataset collected by the authors. 

Two observations can be drawn from Table 2. First, 

the overall accuracy of the model is 90%, which is 

acceptable compared to other models in the literature. 

Second, the model is not exhibiting any major biases, 

as the chances of “under classifying” and “over 

classifying” a roof are equally likely to happen.  

 

Table 2: Confusion Matrix for CNN_5 predictions 

 

 True Label 

Predicted 

Label 
No/Minor Moderate Severe Total 

No/Minor 

Damage 
40 2 2 44 

Moderate 

Damage 
4 8 2 14 

Severe 

Damage 
1 -- 51 52 

Total 45 10 55 110 

 

The performance of the proposed model (CNN_5) 

is compared with models from the literature in Table 

3. Due to the absence of models that address roofing 

condition assessments, the model was compared with 

other defect detection models that are intended for 

other purposes such as pavements and concrete 

elements. Based on Table 4, the performance of the 

proposed model is on par with the state of the art. 

However, this model has the advantage of the lower 

data collection burden. While all models in the 

literature perform micro level assessments and thus 

require scanning a relatively small are of the structure 

to detect the defects. The proposed model only looks 

at a few snapshots that show the entire roof. This 

means that the analysis can (and should) take place 

frequently to produce updated assessments.  

 

Table 3: Comparison with Models in the Literature 

 

Model Purpose Accuracy 

[9] Pavement Crack Detection 92% 

[27] Building Defect Detection 89.1% 

[28] Concrete Defect Detection 89.7% 

Proposed  Roofing Defect Detection 90% 

6 Conclusion 

In this study, a CNN-based model is proposed for 

holistic roofing condition assessment. The proposed 

model relies on a few snapshots showing the general 

view of the roof and classifies the roof accordingly 

into one of three categories (No damage, Moderate, 

Severe). The proposed model is part of a three-step 

roofing inspection and rehabilitation framework that 

aims to aid asset management practitioners with 

prioritizing assessment and rehabilitation events under 

limited budgetary constraints. The proposed model 

addresses the first step which is prioritizing the 

inspection efforts. Using only a few snapshots, the 

model can triage the roofs according to their condition 

and suggest more rigorous inspections for the ones that 

deemed worthy, thus saving on the total time spent on 

inspection site visits and their accompanied office 

work (four hours per building according to [4] and 

[5]). First, three different CNN architectures were 

examined, and one was selected as the better 

performer due to its higher accuracy on the testing 

dataset as well as its lower susceptibility for 

overfitting. While the model addresses an important 

research gap which is the lack of image-based roof 

inspection frameworks, its performance is on par with 

other models in the literature that are intended for 

other purposes such as concrete or pavement defect 

detection. All without the need for detailed images like 

the other models in comparison. 

Regarding the proposed model, future work 

includes automating the data collection process by 

maximizing the drone usage as well as, if possible, 

testing the validity of live satellite images. The 

proposed model is the first of a three-step assessment 
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and prioritization framework (Fig. 5). First, the 

proposed model is used to holistically assess the roofs 

and determine their need for more detailed assessment. 

More detailed assessment can then be conducted for 

roofs that are deemed worthy, which leads to a more 

granular assessment for the roof condition 

highlighting the different damage types and sizes [29]. 

Using cost and crew information (e.g., RS means) 

work packaging estimates for the required 

rehabilitation can be developed. Finally, this 

information is aggregated with other text-based data 

mining information (e.g., building age, description) to 

optimize the use of the limited rehabilitation budget. 

 

 

 
 

Fig. 5: Proposed Roofing Assessment Framework 
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